Binocular coordination in response to stereoscopic stimuli

نویسندگان

  • Simon P. Liversedge
  • Nicolas S. Holliman
  • Hazel I. Blythe
چکیده

Humans actively explore their visual environment by moving their eyes. Precise coordination of the eyes during visual scanning underlies the experience of a unified perceptual representation and is important for the perception of depth. We report data from three psychological experiments investigating human binocular coordination during visual processing of stereoscopic stimuli. In the first experiment participants were required to read sentences that contained a stereoscopically presented target word. Half of the word was presented exclusively to one eye and half exclusively to the other eye. Eye movements were recorded and showed that saccadic targeting was uninfluenced by the stereoscopic presentation, strongly suggesting that complementary retinal stimuli are perceived as a single, unified input prior to saccade initiation. In a second eye movement experiment we presented words stereoscopically to measure Panum’s Fusional Area for linguistic stimuli. In the final experiment we compared binocular coordination during saccades between simple dot stimuli under 2D, stereoscopic 3D and real 3D viewing conditions. Results showed that depth appropriate vergence movements were made during saccades and fixations to real 3D stimuli, but only during fixations on stereoscopic 3D stimuli. 2D stimuli did not induce depth vergence movements. Together, these experiments indicate that stereoscopic visual stimuli are fused when they fall within Panum’s Fusional Area, and that saccade metrics are computed on the basis of a unified percept. Also, there is sensitivity to non-foveal retinal disparity in real 3D stimuli, but not in stereoscopic 3D stimuli, and the system responsible for binocular coordination responds to this during saccades as well as fixations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence of Stereoscopic Surface Disambiguation in the Responses of V1 Neurons.

For the important task of binocular depth perception from complex natural-image stimuli, the neurophysiological basis for disambiguating multiple matches between the eyes across similar features has remained a long-standing problem. Recurrent interactions among binocular disparity-tuned neurons in the primary visual cortex (V1) could play a role in stereoscopic computations by altering response...

متن کامل

The process of stereoscopic perception: A magnetoencephalographic study

Binocular disparity is one of many clues to perceive depth. Random-dot stereograms (RDS) designed by Julesz [1] enables us to make visual stimuli that exclusively have binocular disparity as a depth clue. Many physiological studies were done about visual cortical neurons which respond to binocular disparity [2], but it is still not clear what large-scale activity of such neurons detects corresp...

متن کامل

Early dynamics of stereoscopic surface slant perception

Surface orientation is an important visual primitive that can be estimated from monocular or binocular (stereoscopic) signals. Changes in motor planning occur within about 200 ms after either type of signal is perturbed, but the time it takes for apparent (perceived) slant to develop from stereoscopic cues is not known. Apparent slant sometimes develops very slowly (Gillam, Chambers, & Russo, 1...

متن کامل

Stereoscopic Memory When Stimuli No Longer Persist: Void and Binocular Intervals in Alternating Monocular Presentations

Objective: Studying some temporal aspects of stereoscopic processing in order to clarify phenomena of stereoscopic persistence and investigate how the brain deals with stereoscopic stimuli that involve various types of clues or difficulties (simple versus complex, with or without oriented elements, with or without curvature, with explicit or camouflaged shapes, with or without disparity discont...

متن کامل

Human cortical activity correlates with stereoscopic depth perception.

Stereoscopic depth perception is based on binocular disparities. Although neurons in primary visual cortex (V1) are selective for binocular disparity, their responses do not explicitly code perceived depth. The stereoscopic pathway must therefore include additional processing beyond V1. We used functional magnetic resonance imaging (fMRI) to examine stereo processing in V1 and other areas of vi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009